Bayesian perspectives for epidemiologic research: III. Bias analysis via missing-data methods.
نویسنده
چکیده
I present some extensions of Bayesian methods to situations in which biases are of concern. First, a basic misclassification problem is illustrated using data from a study of sudden infant death syndrome. Bayesian analyses are then given. These analyses can be conducted directly, or by converting actual-data records to incomplete records and prior distributions to complete-data records, then applying missing-data techniques to the augmented data set. The analyses can easily incorporate any complete ('validation' or second-stage) data that might be available, as well as adjustments for confounding and selection bias. The approach illustrates how conventional analyses depend on implicit certainty that bias parameters are null and how these implausible assumptions can be replaced by plausible priors for bias parameters.
منابع مشابه
Commentary: Berkson's fallacy and missing data.
1. Snoep JD, Morabia A, Hernandez-Diaz S, Hernan MA, Vandenbroucke JP. A structural approach to Berkson’s fallacy: and a guide to a history of opinions about it. Int J Epidemiol 2014;43:515–21. 2. Berkson J. Limitations of the application of fourfold table analysis to hospital data. Biometrics Bull 1946;2:47–53. Reprinted Int J Epidemiol 2014;43:511–15. 3. Rothman KJ, Greenland S, Lash TL. Vali...
متن کاملمقایسه روش بیزی (Bayesian) و کلاسیک در برآرد پارامترهای مدل رگرسیون لجستیک با وجود مقادیر گمشده در متغیرهای کمکی
Background and Aim: Logistic regression is an analytic tool widely used in medical and epidemiologic research. In many studies, we face data sets in which some of the data are not recorded. A simple way to deal with such "missing data" is to simply ignore the subjects with missing observations, and perform the analysis on cases for which complete data are available. Materials and Methods: We c...
متن کاملکاربرد جای گذاری چندگانه در تحقیقات پزشکی و اپیدمیولوژی
Data missing, which occurs for different reasons, is an unavoidable problem in epidemiological studies. It is quite widespread and, therefore, it is considered as a challenge in research design and data analysis by many methodologists. Complete case analysis is often used in studies with missing data however, this approach may result in inaccurate estimates and inferences due to bias associated...
متن کاملیک روش جدید برای تصحیح سوگرایی تاییدی در مطالعات بررسی صحت تستهای تشخیصی با استفاده از رویکرد بیزین
Background & Objectives: One of the problems of diagnostic accuracy studies is verification bias. It occurs when standard test performed only for non-representative subsample of study subjects that diagnostic test done for them. In this study we extend a Bayesian method to correct this bias. Methods: Patients that have had at least twice repeated failures in cycles IVF ICSI were included i...
متن کاملComparison of Maximum Likelihood Estimation and Bayesian with Generalized Gibbs Sampling for Ordinal Regression Analysis of Ovarian Hyperstimulation Syndrome
Background and Objectives: Analysis of ordinal data outcomes could lead to bias estimates and large variance in sparse one. The objective of this study is to compare parameter estimates of an ordinal regression model under maximum likelihood and Bayesian framework with generalized Gibbs sampling. The models were used to analyze ovarian hyperstimulation syndrome data. Methods: This study use...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International journal of epidemiology
دوره 38 6 شماره
صفحات -
تاریخ انتشار 2009